Design of a Weather-Normalization Forecasting Model

Final Briefing 09 May 2014

Sponsor: Northern Virginia Electric Cooperative Abram Gross Jedidiah Shirey Yafeng Peng OR-699

Agenda

- Background
- Problem Statement
- Sponsor, Purpose, Objective
- Key Definitions
- Scope
- Assumptions
- Limitations

- Methodology
- Excursions
- Recommendations

Background

- Northern Virginia Electric Cooperative (NOVEC) is an energy distributor serving parts of 6 Northern Virginia counties.
 - Mandated to meet all customer energy requests.
 - Service provided by energy market purchases from regional providers:
 - 1) Bulk purchases via contracts 5 years in advance.
 - 2) Spot purchases up to one day prior to delivery.
- NOVEC conducts analysis to inform energy purchases.
 - Forecasts of energy demand over a 30-year horizon.
 - Decomposes forecasted demand into a base load and seasonal load.
 - Base-load: average demand from customer base.
 - Seasonal-load: weather's impact on base consumption.
- Predicted energy consumption determines bulk purchase quantity.
 - Large error leads to increased costs.
 - Recently requested by Sales Department to improve forecast accuracy.

Problem Statement

- Climate changes have caused NOVEC to question whether the current weather-normalization methodology can be improved.
- NOVEC requests a review of weather-normalization methods that account for changing weather trends:
 - Evaluate new methodologies to compare to existing procedure.
 - Improve estimates of customer base trends.
- NOVEC needs a model to accurately predict total energy consumption.
 - Forecast over 30 year horizon; energy demand reported monthly.
 - Emphasis on first 5 years to align with bulk purchase contracts.
 - Normalizing for weather to quantify customer growth, including impact of economic factors.

Sponsor, Purpose, Objectives

- Sponsor
 - NOVEC.
- Purpose
 - Provide a candidate methodology to normalize weather impact on monthly energy purchases.
- Objectives:
 - 1) Assess historic relationships between economic, weather, and power data.
 - 2) Develop a forecast model to test normalization methodologies.
 - 3) Test weather-normalization methodologies; recommend one for implementation based on accuracy and robustness.

Key Definitions

- Heating Degree-Day (HDD): Measure used to indicate amount of energy need to heat during cold weather.
- Cooling Degree-Day (CDD): Measure used to indicate amount of energy need to cool during hot weather.

Scope

- Data:
 - NOVEC monthly energy purchases data since 1983.
 - Dulles Airport weather data since 1963.
 - Historic economic factors data since 1980s metro D.C.; state and county data not evaluated.
 - 30 years of Moody's Analytics forecasted economic factors.
- Model:
 - Inputs: historic energy purchases, weather data, economic variables, and customer-base.
 - Output: Monthly predictions for energy consumption over a 30-year horizon.
 - Regression: characterize dynamics between parameters.
 - Weather-normalization: remove seasonal weather impacts on NOVEC's load.
 - Forecast: facilitate testing of varied normalization methodologies.
 - Ensure synergy with NOVEC's existing models (regression, weathernormalization, forecast).

Assumptions

- Neutral zone between HDD/CDD has insignificant impact on energy consumption.
 - 55 and 65 degrees are the lower and upper bounds.
- Economic variables currently utilized provide proper indicators for gauging future power demand:
 - Employment: Total Non-Agricultural
 - Gross Metro Product: Total
 - Housing Completions: Total
 - Households
 - Employment (Household Survey): Total Employed
 - Employment (Household Survey): Unemployment Rate
 - Population: Total

Limitations

- Unable to develop deep understanding of NOVEC's current forecast model due to complexity and time constraints:
 - Hinder adopting into existing model.
 - Skew comparisons of forecast accuracy.
- Economic regression model determines customer base; potential for inconsistent forecast comparisons of this and NOVEC's current model output.
- Baseline economic scenario only scenario evaluated.

Approach

Methodology

- Data processing included linear interpolation for data gaps, disaggregating quarterly economic data, as well as aggregating hourly weather data, up to monthly resolution.
- Primary methodologies: Split Regression Model, Combined Regression Model, and Ratio Model

Combined Linear Regression Model

- Intuition:
 - Usage should be a function of economic contributions and weather contributions.

 $y = f(x_{1..i}, HDD, CDD)$ y: total observed load x_i : economic variables HDD: Heating degree day; CDD: Cooling degree day

Accuracy of Linear Regression Model

• Adjusted R-square = 0.925

Additional Forecasting Methods

Split Regression

- total load = residential load + non-residential load
 - residential load = # of residential customer * avg residential
 - non-residential load = # of non-residential customer * avg non-residential
- Customer Ratio Method
 - total load = residential load + non-residential load
 - residential load = # of residential customer * avg residential
 - non-residential load = residential load * ratio

Estimate of Customer Base

- Customers are categorized as either residential or non-residential.
- >99% adjusted R square based on the 7 econometric variables from 1990-2011.
 - Linear regression model provides sufficient accuracy for predicting customer base.

Estimate Average Customer Usage

- Tested linear regression on 3 similar models
 - 7 Econometric Variables + HDD + CDD
 - 7 Econometric Variables only

variable • Z3 • EstZ3

Customer Usage Ratio Method

Ratio of average usage between non-residential vs. residential

HDD/CDD Forecasting Methods

- Holt-Winters Method
- ARIMA method
 - Not good as correlogram violates control limit
- BAT Method
 - Basically a superset of Holt-Winters. No improvement over Holt-Winters Method.

Holt-Winter Method for HDD/CDD Forecasting

19

Accuracy of Holt-Winters Method

Correlogram Plot

Residual Plot

HDD Correlogram of in-sample forecast errors for length_2

HDD Residule Plot

Modeling Excursions

- Tested sensitivity using different domains of time:
 - Regression models inform forecast output.
 - All historic economic variables are actual records:
 - Same for all scenarios.
 - Serve as starting point for forecast.

Model Selection

Fotal Load (GWH)

300

200

- Merit given to the balance between:
 - Bulk-energy error for first five years of forecast.
 - Robust to changes; back-tested on historic data.

- Using 1990-2005 data for regression modeling:
 - Informs monthly forecasts for 30 years.
 - Cumulative relative error assessed.

2

2

Robust to changes; back-tested on historic

FORECAST HORIZON

3

1.01E+10

9.02E+09

9.65E+09

9.46E+09

3

6%

-5%

2%

4

1.37E+10

1.22E+10

1.31E+10

1.27E+10

4

8%

-4%

3%

5

1.75E+10

1.56E+10

1.67E+10

1.63E+10

5

8%

-4%

2%

Modeling Excursion - Results

 Candidate model selection: split-model with seasonal trend forecast.

ita iain)	YEARLY %-ERROR in CUMULATIVE LOAD	FORECAST HORIZON				
(Da Dom	Modeling Approach	1	2	3	4	5
1990-1995	Combined Model	10%	12%	14%	17%	27%
	Split Models	-2%	0%	1%	2%	3%
	Ratio - Split Models	4%	6%	6%	6%	7%
1990-2000	Combined Model	10%	12%	14%	17%	27%
	Split Models	-2%	0%	1%	2%	3%
	Ratio - Split Models	4%	6%	6%	6%	7%
1990-1995	Combined Model	4%	2%	3%	3%	2%
	Split Models	-4%	-7%	-9%	-11%	-13%
	Ratio - Split Models	4%	1%	-1%	-3%	-6%
1990-2008 1990-2005	Combined Model	6%	5%	6%	8%	8%
	Split Models	-4%	-5%	-5%	-4%	-4%
	Ratio - Split Models	3%	2%	2%	3%	2%
	Combined Model	3%	3%	2%	2%	3%
	Split Models	3%	2%	0%	0%	0%
	Ratio - Split Models	10%	8%	7%	6%	6%

Recommendations

- We recommend that NOVEC use the "Split-Trend Model":
 - Mirrors methodology currently employed.
 - Potential for improvements with quantifying trends to seasonal loads (Holt-Winters method).
 - Supplement their current weather-normalization forecasting model.
- Suggestions for future analysis:
 - Determine best set of economic variables to predict future customer base;
 - Population size, and thus tested methodologies, are sensitive to this parameter.
 - Best subset is likely to change over time.
 - Determine best set of neutral zone boundaries to compute CDD/HDD.
 - Perform further analysis on the ratio method and the ARIMA HDD/CDD forecasting with preliminary de-trending.